Disjoint Common Transversals and Exchange Structures
نویسنده
چکیده
We state and prove a theorem (Theorem 1 below) which strengthens previously known results concerning disjoint common partial transversals of two families of sets. This theorem may be viewed as a result on transversal pre-independence structures. We define a "disjoint-exchange structure" on a set and extend the result to such structures (Theorem 3 below). Then we give an application of this theorem to strongly-base-orderable matroids, and deduce a result on the existence of a number of common transversals of two families of sets with each pair of transversals intersecting in a given set.
منابع مشابه
On the Helly Number for Hyperplane Transversals to Unit Balls
We prove some results about the Hadwiger problem of nding the Helly number for line transversals of disjoint unit disks in the plane, and about its higher-dimensional generalization to hyperplane transversals of unit balls in d-dimensional Euclidean space. These include (a) a proof of the fact that the Helly number remains 5 even for arbitrarily large sets of disjoint unit disks|thus correcting...
متن کاملHelly-Type Theorems for Line Transversals to Disjoint Unit Balls
We prove Helly-type theorems for line transversals to disjoint unit balls in R. In particular, we show that a family of n > 2d disjoint unit balls in R has a line transversal if, for some ordering ≺ of the balls, any subfamily of 2d balls admits a line transversal consistent with ≺. We also prove that a family of n > 4d − 1 disjoint unit balls in R admits a line transversal if any subfamily of ...
متن کاملOn the Connected Components of the Space of Line Transersals t a Family of Convex Sets
Let L be the space of line transversals to a nite family of pairwise disjoint compact convex sets in R 3. We prove that each connected component of L can itself be represented as the space of transversals to some nite family of pairwise disjoint compact convex sets.
متن کاملThe Harmony of Spheres
Let F = {X1, . . . , Xn} be a family of disjoint compact convex sets in R. An oriented straight line ` that intersects every Xi is called a (line) transversal to F . A transversal naturally induces an ordering of the elements of F , this ordering, together with its reverse (which is induced by the same line with opposite orientation), is called a geometric permutation. Geometric transversal the...
متن کامل